

From the Rocks to the Stocks:

Library Research with a Geosciences Librarian and a Finance Librarian January 14, 2021

Emily Wild and Bobbi Coffey, Princeton University Library

Princeton University Library

Princeton University – GPO FDLP since 1884

Princeton University has a longstanding commitment to service, reflected in Princeton's informal motto —
Princeton in the nation's service and the service of humanity — and exemplified by the extraordinary
contributions that Princetonians make to society."

https://www.princeton.edu/meet-princeton/service-humanity

Firestone Library

Research Collections and Preservation Consortium (ReCAP)

Lewis Science Library

Emily: "From the Rocks...

- Energy Resources: Oil, Gas, Coal, Gas Hydrates
- Mineral Resources & Commodity Information

https://cogccmap.state.co.us/cogcc_gis_online/

https://pubs.usgs.gov/of/2003/ofr-03-046/OFR-03-046-508.pdf

Quick Bio

Emily C. Wild

Princeton University Library

ewild@princeton.edu

Schedule a Research Consultation :

Monday – Friday

Meet Our Specialists – Emily Wild

ORCID: https://orcid.org/0000-0001-6157-7629

Princeton University Library, 2018-Present

Chemistry, Geosciences and Environmental Studies Librarian

https://library.princeton.edu/staff/ewild

Department of Chemistry https://chemistry.princeton.edu/

Department of Geosciences https://geosciences.princeton.edu/

High Meadows Environmental Institute (HMEI)

https://environment.princeton.edu/

U.S. Geological Survey: https://www.usgs.gov/staff-profiles/emily-wild

- Denver, Colorado: 2008-2018 - Librarian (Physical Scientist)

- NH-VT & MA-RI: 1996-2008 Hydrologist

Water: https://www.usgs.gov/mission-areas/water-resources

Energy: https://www.usgs.gov/energy-and-minerals/energy-resources-program/

Minerals: https://www.usgs.gov/energy-and-minerals/mineral-resources-program

Environmental Health: https://www.usgs.gov/mission-areas/environmental-health

Hazards: https://www.usgs.gov/mission-areas/natural-hazards

Previously also worked in libraries at the reference desk :

Providence College, University of Rhode Island, Hartwick College

Energy & Minerals in Rocks - a geosciences librarian – who do I help?

At the U.S. Geological Survey, 2008-2018

- General Public
- Teachers, K-12
- College/University Professors
- City, County, State Natural Resource Managers
- Undergraduate & Graduate Students
- New Employees to Geosciences or Post-Docs
- Federal Science Agencies, Scientists & Attorneys
- Private Sector: Scientists & Attorneys
- International Governments & Institutions
- Experienced Library Users that need a refresher

Undergraduate & Graduate Students

College/University Professors

At Princeton University, 2018-present

- Librarians
- Post-Docs
- Federal Science Agencies, Scientists & Attorneys
- Private Sector: Scientists & Attorneys
- Finance Industry
- International Governments & Institutions
- City, County, State Natural Resource Managers
- Experienced Library Users that need a refresher

Colorado and World Geology

New York City Region & World Geology

What is geosciences?

From American Geosciences Institute (AGI):

https://www.americangeosciences.org/critical-issues/faq/what-is-geoscience

Geoscience is the study of the Earth - its oceans, atmosphere, rivers and lakes, ice sheets and glaciers, soils, its complex surface, rocky interior, and metallic core. This includes many aspects of how living things, including humans, interact with the Earth. Geoscience has many tools and practices of its own but is intimately linked with the biological, chemical, and physical sciences.

Geoscience investigates the past, measures the present, and models the future behavior of our planet. But it also involves the study of other planets, asteroids, and solar systems, both to better understand the Earth and to expand our knowledge of the universe.

Scientist

Raw Data: Real-Time, Continuous, Recent Partial Records, Historical Calculated Data: Equations, Software Results, Lab Results, and Model Results

Map Data: Specific Location Information by Geosciences Topic Citation Data: Bibliographic Information & Finding Publications

Many Free Geosciences Information Sources: Geological Surveys & Geosciences Societies

https://www.gsj.jp/en/gsj-link/directory/index.html

Modified from:
Wild and Havener, 2001
"Online bibliographic sources in hydrology"

https://pubs.er.usgs.gov/publication/70023512

USGS History: the Pre-USGS Map Area the Four Surveys, 1867-1879

Catalogue and index of the publications of the Hayden, King, Powell, and Wheeler surveys

U.S. Geological and Geographical Survey of the Territories (Hayden)

U.S. Geological Exploration of the Fortieth Parallel (King)

U.S. Geographical and Geological Survey of the Rocky Mountain Region (Powell)

U.S. Geographical Surveys West of the One Hundred! of the One Hundredth Meridian (Wheeler)

The Four Great Surveys of the West

March 3, 1879: Legislation to rename the Coast and Geodetic Survey and transfer it to the Department of the Interior and to establish the U.S. Geological Survey for "classification of the public lands, and examination of the geological structure, mineral resources, and products of the national domain"

Types of Questions for Energy & Mineral Resources

https://pubs.usgs.gov/gip/dynamic/historical.html

United States and Worldwide

- Earth processes that create oil, gas, coal, minerals, and uranium
- Location of natural resources

Geologic Time Scale – 2018

https://pubs.usgs.gov/fs/2018/3054/fs20183 054.pdf

Geologic Units - USGS Lexicon:

https://ngmdb.usgs.gov/Geolex/search

Geologic Units - Mexico Lexicon:

https://www.sgm.gob.mx/Lexico_Es/

Glossary of Geology

https://www.americangeosciences.org/pubs/g lossary

Example:

Glossary of Geology – Online at Princeton University

https://catalog.princeton.edu/catalog/8875615

Cretaceous Western Interior Seaway

New York City Region

USGS Estimates 214 trillion Cubic Feet of
Natural Gas in Appalachian Basin Formations
Release Date: OCTOBER 3, 2019

Seismic Research Cruise Provides New Data on U.S. Atlantic Margin Gas Hydrates
Release Date: SEPTEMBER 20, 2018

World Assessments: Oil & Minerals

Search = Arabian Shield Province :

https://pubs.er.usgs.gov/search?q=Arabian+Shield+Province+

Search = Arabian Peninsula:

https://pubs.er.usgs.gov/search?q=Arabian+Peninsula

Search = Kingdom of Saudi Arabia:

https://pubs.er.usgs.gov/search?q=Kingdom+of+Saudi+Arabia+

Search = Iraq : https://pubs.er.usgs.gov/search?q=Iraq

https://pubs.usgs.gov/imap/0210a/plate-1.pdf

Science for a changing world

National and Global Petroleum Resource Assessment Project

Assessment of Unconventional Oil and Gas Resources in the Jurassic Sargelu Formation of Iraq, 2014

Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 1.6 billion barrels of unconventional oil and 0.96 trillion cubic feet of associated gas in the Jurassic Sargelu Formation of Iraq.

Introductio

The U.S. Geological Survey (USGS) quantitatively assessed the potential for unconventional (continuous) oil and gas resources within the Jurassic Sargelu Formation of Iraq (Sargelu Continuous Oil Assessment Unit; fig. 1). Organic-rich shales of the Jurassic Sargelu Formation are one of the main petroleum source rocks for conventiona fields in the Arabian Peninsula (fig. 2) (Bordenave and Hegre, 2010). The Sargelu Formation consists of marine shales, with as much as 10 weight percent sulfur-rich Type IIS organic matter, deposited in a relatively deep. anoxic Jurassic depocenter. The potential for volumes of oil retained in the Sargelu Formation source-reservoir rock system following oil migration, cracking, or degradation is the focus of this assessment. Conventional oil and gas resources of Iraq were assessed by the USGS in 2012 (U.S Geological Survey World Energy Assessment Team, 2012).

The USGS assessment methodology consists of a well-performance approach (Charpentier and Cook, 2011) that recognizes the geologic warbability within assessed reservoirs. For non-U.S. assessments, the USGS assesses shale-gas or shale-oil reservoirs that (1) contain greater than 2 weight percent total organic carbon (TOC), (2) are within the proper thermal maturity window for oil or gas generation, (3) have greater than 15-m thickness

https://certmapper.cr.usgs.gov/data/apps/world-energy/?resource=conventional

https://pubs.usgs.gov/fs/2015/3006/pdf/fs2015-3006.pdf

https://afghanistan.cr.usgs.gov/oil-and-natural-gas-publications-maps

Figure 1. Satellite image of southern and western Afghanistan showing prospective assessment units of the Tirpul Basin (AU 80230101), Helmund Basin (AU 80220101), and Katawaz Basin (AU 80240101); well and sample locations; and relevant faults. Image from National Geospatial Intelligence Agency, 12 July 2004, unclassified.

https://afghanistan.cr.usgs.gov/minerals

Summaries and Data
Packages of Important
Areas for Mineral
Investment and
Production
Opportunities in
Afghanistan

https://afghanistan.cr.usgs.gov/minerals-publications-maps

A User-Friendly, Keyword-Searchable Database of Geoscientific References Through 2007 for Afghanistan https://pubs.usgs.gov/ds/323/

The reference compilation is part of a larger joint study of Afghanistan's energy, mineral, and water resources, and geologic hazards currently underway by the U.S. Geological Survey, the British Geological Survey, and the Afghanistan Geological Survey.

Mineral research materials

GRAPHITE (NATURAL)

the largest natural graphite mine globally. The mine cut back production during 2019 in an effort to stabilize graphite prices. The mine is expected to operate for 50 years.

During the first half of 2019, crystalline flake graphite prices declined to levels similar to those of midyear 2017. The price decline was the result of oversupply, and some graphite mining companies cut back production in an effort to stabilize and increase graphite prices.

A U.S. automaker continued to build a large plant to manufacture lithium-ion electric vehicle batteries. The plant's completion was projected for 2020. A portion of the plant was operational and battery packs were being assembled in 2018 and 2019. When the plant is complete, it was expected to require 35,200 tons per year of spherical graphite for use as anode material for lithium-ion batteries.

New thermal technology and acid-leaching techniques have enabled the production of higher purity graphite powders that are likely to lead to development of new applications for graphite in high-technology fields. Innovative refining techniques have made the use of graphite possible in carbon-graphite composites, electronics, foils, friction materials, and specialty lubricant applications. Flexible graphite product lines are likely to be the fastest growing market. Large-scale fuel-cell applications are being developed that could consume as much graphite as all other uses combined.

World Mine Production and Reserves: Reserves for Mozambique and Tanzania were revised based on information reported by graphite-producing companies and the Governments of those countries.

	Mine	production	Reserves ²
	<u>2018</u>	2019 ^e	
United States	_	_	(3)
Austria	1,000	1,000	(3)
Brazil	95,000	96,000	72,000,000
Canada	40,000	40,000	(3)
China	693,000	700,000	73,000,000
Germany	800	800	(3)
India	35,000	35,000	8,000,000
Korea, North	6,000	6,000	2,000,000
Madagascar	46,900	47,000	1,600,000
Mexico	9,000	9,000	3,100,000
Mozambique	104,000	100,000	25,000,000
Namibia	3,460	3,500	(3)
Norway	16,000	16,000	600,000
Pakistan	14,000	14,000	(3)
Russia	25,200	25,000	(3)
Sri Lanka	4,000	4,000	(3)
Tanzania	150	150	18,000,000
Turkey	2,000	2,000	90,000,000
Ukraine	20,000	20,000	(3)
Vietnam	5,000	5,000	7,600,000
Zimbabwe	2,000	2,000	(3)
Other	200	200	(3)
World total (rounded)	1,120,000	1,100,000	300,000,000

<u>World Resources</u>: Domestic resources of graphite are relatively small, but the rest of the world's inferred resources exceed 800 million tons of recoverable graphite.

<u>Substitutes</u>: Synthetic graphite powder, scrap from discarded machined shapes, and calcined petroleum coke compete for use in iron and steel production. Synthetic graphite powder and secondary synthetic graphite from machining graphite shapes compete for use in battery applications. Finely ground coke with olivine is a potential competitor in foundry-facing applications. Molybdenum disulfide competes as a dry lubricant but is more sensitive to oxidizing conditions.

2019 U.S. NET IMPORT RELIANCE¹

Commodity	Percent	Major import sources (2015–18) ²
ARSENIC (all forms)	100	China, Morocco, Belgium
ASBESTOS	100	Brazil, Russia
CESIUM	100	Canada
FLUORSPAR	100	Mexico, Vietnam, South Africa, China
GALLIUM	100	China, United Kingdom, Germany, Ukraine
GRAPHITE (natural)	100	China, Mexico, Canada, India
INDIUM	100	China, Canada, Republic of Korea, Taiwan
MANGANESE	100	South Africa, Gabon, Australia, Georgia
MICA, sheet (natural)	100	China, Brazil, Belgium, Austria
NEPHELINE SYENITE	100	Canada
NIOBIUM (columbium)	100	Brazil, Canada, Russia, Germany
RARE EARTHS ³ (compounds and metal)	100	China, Estonia, Japan, Malaysia
RUBIDIUM	100	Canada
SCANDIUM	100	Europe, China, Japan, Russia
STRONTIUM	100	Mexico, Germany, China
TANTALUM	100	Rwanda, Brazil, Australia, Congo (Kinshasa)
YTTRIUM	100	China, Estonia, Republic of Korea, Japan
GEMSTONES	99	India, Israel, Belgium, South Africa
BISMUTH	96	China, Belgium, Mexico, Republic of Korea
TELLURIUM	>95	Canada, China, Germany
VANADIUM	94	Austria, Canada, Russia, Republic of Korea
TITANIUM MINERAL CONCENTRATES	93	South Africa, Australia, Canada, Mozambique
POTASH	91	Canada, Russia, Belarus, Israel
DIAMOND (industrial stones)	88	India, South Africa, Botswana, Australia
BARITE	87	China, India, Morocco, Mexico
ZINC (refined)	87	Canada, Mexico, Australia, Peru

https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf

UW Researchers Turn Coal Powder into Graphite in Microwave Oven

http://www.uwyo.edu/uw/news/2021/01/uw-researchers-turn-coal-powder-into-graphite-in-microwave-oven.html

China

D.R. Congo

Nb Ta

Pd Ag Cd In Sn

Investigation of U.S. Foreign Reliance on Critical Minerals—U.S. Geological Survey **Technical Input Document in Response to Executive Order No. 13953 Signed September 30, 2020** December 2020

Russia Canada РЬ Chile South Africa Mn Fe Co Ni Pb Ir Pt Au Hg Percent of global production

Australia

Brazil

Be Mg

https://periodic.lanl.gov/index.shtml

Critical Minerals

Critical Mineral Commodities in Renewable Energy

Critical Minerals

Critical Mineral Commodities in Renewable Energy

Batteries Batteries play an important supporting role for renewable energy sources like wind and solar, allowing excess power to be stored for usage when direct solar or wind power are unavailable. Just like the energy sources they complement, modern batteries rely on critical mineral commodities, particularly cobalt, graphite, lithium, and manganese. COBALT On a global basis, the leading use of cobalt is in rechargeable battery electrodes. In 2018, the United States relied on foreign sources for 61% of the cobalt it consumed. Image Source: James St. John

please visit www.usgs.gov.

Government Stocknile:7

133

32

RARE EARTHS¹

[Data in metric tons of rare-earth-oxide (REO) equivalent content unless otherwise noted]

Domestic Production and Use: Rare earths were mined domestically in 2019. Bastnaesite (or bastnasite), a rare-earth fluorocarbonate mineral, was mined as a primary product at a mine in Mountain Pass, CA, which was restarted in the first quarter of 2018 after being put on care-and-maintenance status in the fourth quarter of 2015. Monazite, a phosphate mineral, was produced as a separated concentrate or included as an accessory mineral in heavy-mineral concentrates. The estimated value of rare-earth compounds and metals imported by the United States in 2019 was \$170 million, an increase from \$160 million in 2018. The estimated distribution of rare earths by end use was as follows: catalysts, 75%; metallurgical applications and alloys, 5%; ceramics and glass, 5%; polishing, 5%; and other, 10%.

Salient Statistics—United States:	2015	2016	2017	2018	2019°
Production, bastnaesite concentratese	5,900	_	_	18,000	26,000
Imports:2					
Compounds	9,160	11,500	11,000	10,800	14,000
Metals:					
Ferrocerium, alloys	356	268	309	301	310
Rare-earth metals, scandium, and yttrium	385	404	524	527	590
Exports:2					
Ores and compounds	4,980	590	1,740	16,800	26,000
Metals:					
Ferrocerium, alloys	1,220	943	982	1,210	1,400
Rare-earth metals, scandium, and yttrium	60	103	55	28	100
Consumption, apparent ³	9,550	10,500	9.060	11,600	13,000
Price, dollars per kilogram, average:4	-,	,	-,	,	,
Cerium oxide, 99.5% minimum	3	2	2	2	2
Dysprosium oxide, 99.5% minimum	279	198	187	179	240
Europium oxide, 99.99% minimum	344	74	77	53	35
Lanthanum oxide, 99.5% minimum	3	2	2	2	2
Mischmetal, 65% cerium, 35% lanthanum	7	5	6	6	6
Neodymium oxide, 99.5% minimum	48	40	50	50	45
Terbium oxide, 99,99% minimum	564	415	501	455	510
Employment, mine and mill, annual average	351	413	24	190	220
Net import reliance ⁵ as a percentage of	331		24	130	220
apparent consumption:6					
Compounds and metals	38	100	100	100	100
Mineral concentrates	XX	XX	XX	100 E	100 E
Willieral Concentrates	**	^^	**		E

Recycling: Limited quantities of rare earths from batteries, permanent magnets, and fluorescent lamps are recycled.

Import Sources (2015–18): Rare-earth compounds and metals: China, 80%; Estonia, 6%; Japan and Malaysia, 3% each; and other, 8%. Compounds and metals imported from Estonia, Japan, and Malaysia were derived from mineral concentrates and chemical intermediates produced in Australia. China, and elsewhere.

,,			
Tariff: Item	Number	Normal Trade Relations 12–31–19	
Rare-earth metals, scandium, and yttrium,			
whether or not intermixed or interalloyed	2805.30.0000	5.0% ad val.	
Cerium compounds:			
Oxides	2846.10.0010	5.5% ad val.	
Other	2846.10.0050	5.5% ad val.	
Other rare-earth compounds:			
Lanthanum oxides	2846.90.2005	Free.	
Other oxides	2846.90.2040	Free.	
Lanthanum carbonates	2846.90.8070	3.7% ad val.	
Other carbonates	2846.90.8075	3.7% ad val.	
Other rare-earth compounds	2846.90.8090	3.7% ad val.	
Ferrocerium and other pyrophoric alloys	3606.90.3000	5.9% ad val.	

<u>Depletion Allowance</u>: Monazite, 22% on thorium content and 14% on rare-earth content (Domestic), 14% (Foreign); bastnäsite and xenotime, 14% (Domestic and foreign).

Prepared by Joseph Gambogi [(703) 648-7718, jgambogi@usgs.gov]

RARE EARTHS

- Continuent Cookpile		FY 2019		FY 2020	
Material	Inventory As of 9-30-19	Potential Acquisitions	Potential Disposals	Potential Acquisitions	Potential Disposals
Cerium	_	_	_	900	_
Dysprosium	0.2	0.5	_	_	_
Europium	20.9	35	_	_	_
Ferrodysprosium, gross weight	0.5	_	_	_	_
Lanthanum, gross weight	_	_	_	4,100	_
Rare earths	_	416	_	_	_
Rare-earth-magnet feedstock	_	100	_	100	_
Yttrium oxide	25	10	_	_	_

Events, Trends, and Issues: Global mine production was estimated to have increased to 210,000 tons of rare-earth-oxide equivalent, an 11% increase compared with that of 2018. In the United States, domestic production of mineral concentrates, all of which were exported, increased to 26,000 tons, a 44% increase compared with that of 2018. China continued to dominate the global supply of rare earths. According to China's Ministry of Industry and Information Technology, the mine and separation production quotas for 2019 were 132,000 tons and 127,000 tons, respectively.

World Mine Production and Reserves: Reserves for Canada, Greenland, Tanzania, and South Africa were previously included with "Other countries."

Mine production ^e	Reserves ⁸
2018 2019	

Rare Earth Processing
Plant Opens in Colorado

USA Rare Earth's ambitious plans for domestic supply chain

2018 2019			
	Mine p	roductione	Reserves ⁸
	2018	<u>2019</u>	
United States	18,000	26,000	1,400,000
Australia	21,000	21,000	93,300,000
Brazil	1,100	1,000	22,000,000
Burma (Myanmar)	19,000	22,000	NA
Burundi	630	600	NA
Canada	_	_	830,000
China	10120,000	10132,000	44,000,000
Greenland	_	_	1,500,000
India	2,900	3,000	6,900,000
Madagascar	2,000	2,000	NA
Russia	2,700	2,700	12,000,000
South Africa	_	_	790,000
Tanzania	_	_	890,000
Thailand	1,000	1,800	NA
Vietnam	920	900	22,000,000
Other countries	60	_	310,000
World total (rounded)	190,000	210,000	120,000,000
. ,		-	

First Action Every Morning, During Lunchtime, and Last Action of Day

The New York Times

https://www.nytimes.com/2021/01/05/business/energy-environment/opec-plus-oil-prices.html

Example, Princeton University: https://libguides.princeton.edu/NYT

https://www.eenews.net/

THE WALL STREET JOURNAL.

https://www.wsj.com/news/business/natural-resources

Example, Princeton University:

https://libguides.princeton.edu/WSJ

Geology Societies

Society for Mining, Metallurgy, and Exploration (SME) https://www.smenet.org/

Publications:

Mining Engineering https://me.smenet.org/

Mining, Metallurgy & Exploration

https://www.smenet.org/Professional-

Development/Publications/Mining-Metallurgy-

Exploration

https://www.onemine.org/index.cfm

All About Mining:

https://allaboutmining.org/

Email me for past presentations

(ewild@princeton.edu)

https://community.smenet.org/newyork/home

2020 events

Online presentations: Strengthening Critical Minerals Supply Chains in North America: The Key Role of Québec

SME's 8th Current Trends in Mining Finance (CTMF) Conference
Managing Risk and Identifying Opportunities in a Disruptive World

CMA 123rd NATIONAL WESTERN MINING CONFERENCE

https://www.smeannualconference.com/

Colorado Mining Association: https://www.coloradomining.org/

United States Mint

Geology Makes Money

Denver Mint & Philadelphia Mint: Cent (Penny)

Composition	Weight	Diameter
Copper Plated Zinc 2.5% Cu Balance Zn	2.500 g	0.750 in. 19.05 mm

https://www.usmint.gov/coins/coin-medal-programs/circulating-coins/penny

https://www.usmint.gov/learn/coin-and-medal-programs/circulating-coins

Geology - New York City – Wall Street

https://ngmdb.usgs.gov/Prodesc/proddesc 10233.htm

Image 1 of 2 - Sheet 1 of 2: Bedrock geology

product is out of print and may be located at a Depository Library.

€m

Manhattan Schist (Lower Cambrian)—Gray, medium- to coarse-grained, layered sillimanite-muscovite-biotite-kyanite schist and gneiss interlayered with layered tourmaline-garnet-plagioclase-biotite-quartz schist and gneiss with black amphibolite layers 3 ft or more thick. Weathers gray, tan, rusty, and maroon. Sillimanite occurs in lenses and nodules, commonly with kyanite, and also with magnetite or quartz; sillimanite nodules average 0.8 in. in length. Unit locally contains interlayered thin quartz-mica-plagioclase-garnet granofels. Sparse garnet and (or) plagioclase porphyroblasts are present; the garnets average 0.4 in. across. In places the foliation surfaces bear lustrous white mica having a gray metallic sheen. A major thrust fault, the Inwood Hill, separates the Manhattan Schist from the underlying Walloomsac Formation (see cross section A–A′)

Federal Reserve Bank of New York

"As of 2019, the vault housed approximately 497,000 gold bars, with a combined weight of about 6,190 tons. The vault is able to support this weight because it rests on the bedrock of Manhattan Island, 80 feet below street level and 50 feet below sea level."

https://www.newyorkfed.org/aboutthefed/gold vault.html

Session Overview

- Natural resources based traded commodities:
 - Industrial metal (copper, aluminum...),
 - Precious metals (gold, silver..),
 - Forest (pulp, lumber..),
 - Energy (Brent, WTI...)
- Alternative energy / Renewable energy Wind, Solar, Geothermal
- Rare Earths not yet a traded commodity.
- Commodity investing: Commodity trading, ETF/ETNs, stock trading.

Quick Bio

Bobbi: "...to the Stocks"

- Equity Research Analyst turned Finance Librarian
- 25+ years Wall Street analyst following technology
- Wrote extensively on changing industries and how industry evolution changed company valuation.
- Quoted as industry expert in New York Times and other print media and appeared on air for Bloomberg radio and TV as well as other venues.

What is finance? And other defintions

Finance is defined as the management of money and includes activities such as investing, borrowing, lending, budgeting, saving, and forecasting.

(From: Corporatefinanceinstitute.com)

The act of investing has the goal of generating income and /or increasing value over time. (from Investopedia)

Ways to invest - stocks of companies whose fortunes depend on the resource, ETF & ETN - Exchange traded funds and notes which are designed to mirror returns of the underlying asset and commodity future contracts. Varying level of leverage and costs.

What is a finance librarian?

As Princeton's finance librarian, I help researchers find the resources they need for their independent research and related work. To help researchers, I curate pertinent resources in finance for Princeton University.

Accordingly, to know what the pertinent resources are I stay up to date on the trends in finance and in finance research.

Finance research users

At Princeton University, 2017-present

- Undergraduate & Graduate Students
- Alumni
- College/University Professors
- Librarians
- Post-Docs
- Finance Industry Professionals
- Experienced Library Users that need a refresher

New York Federal Reserve Bank

Over \$260 billion in gold.

The vast majority of gold in the NY Fed is not domestic but owned by international entities.

https://www.newyorkfed.org/ - located in lower
Manhattan
and pre-COVID offered tours. The tours discussed the
operations of the Federal Reserve Banks as well as
visited
the gold vaults in the basement.

There are 12 Federal Reserve Banks.

FRED - https://fred.stlouisfed.org/ Crude oil prices / barrel

FRED - https://fred.stlouisfed.org/ Gold price per Troy ounce

FRED - https://fred.stlouisfed.org/

For WTI

Source: U.S. Energy Information Administration

Release: Spot Prices

Units: Dollars per Barrel, Not Seasonally Adjusted

Frequency: Daily

Definitions, Sources and Explanatory Notes

Suggested Citation:

U.S. Energy Information Administration, Crude Oil Prices: West Texas Intermediate (WTI) - Cushing, Oklahoma [DCOILWTICO], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/DCOILWTICO, January 11, 2021.

For Gold

Source: ICE Benchmark Administration Limited (IBA)

Release: LBMA Gold Price: Daily Prices

Units: U.S. Dollars per Troy Ounce, Not Seasonally Adjusted

Frequency: Daily

The London Bullion Market Association (LBMA) Gold Price was launched on the 20th March 2015 to replace the historic London Gold Fix. ICE Benchmark Administration (IBA) provides the auction platform, methodology as well as overall independent administration and governance for the LBMA Gold Price, with the LBMA holding the intellectual property rights. The price continues to be set twice daily (at 10:30 and 15:00 London GMT) in US dollars. Sterling and Euro prices are available but they are indicative prices for settlement only. For further information contact the LBMA at Au.Consult@lbma.org.uk or the IBA at iba@theice.com.

Copyright, 2016, ICE Benchmark Administration.

Suggested Citation:

ICE Benchmark Administration Limited (IBA), Gold Fixing Price 10:30 A.M. (London time) in London Bullion Market, based in U.S. Dollars [GOLDAMGBD228NLBM], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GOLDAMGBD228NLBM, January 10, 2021.

EDGAR - https://www.sec.gov/edgar/search-and-access

EDGAR - Search engine for filing by publicly traded funds and companies

- Know what your are buying when you invest.
- Read the filings fund filings. Shareholder reports.
- Read the company filings. For companies:
 - 10-Ks are the annual filing and will show financial statements and have commentary on the state of the business, risks and notes on the financial statements
 - 10-Qs are the quarterly filings and will show the quarterly financial statements and will have notes on the financial statements.
 - 8-Ks are interim reports and often have significant events relevant to shareholders.
 - Proxies are reports that detail of the management compensation and materials for the annual meetings.

Resources - Government:

https://www.investor.gov/ - solid information on investing. An SEC site.

https://tools.finra.org/fund_analyzer/ - fund specific information from the

Financial Industry Regulatory Authority (FINRA)

https://www.sec.gov/edgar/searchedgar/companysearch.html - Securities and

Exchange Commission(SEC) site. Has all SEC filings.

https://fred.stlouisfed.org/ - Current Economic Data from the St. Louis Federal

Reserve Bank

https://fraser.stlouisfed.org/ - Historic Economic Data from the St. Louis Federal

Reserve Bank

Resources – Commercial:

```
https://www.bloomberg.com/ - Bloomberg
https://www.ft.com/ - Financial Times
https://www.cnbc.com/ - CNBC
https://www.wsj.com/ - Wall Street Journal
https://www.reuters.com/ - Reuters
https://www.economist.com/ - Economist
```


Thank you! Questions?

Princeton University Library https://library.princeton.edu/

Department of Chemistry
https://chemistry.princeton.edu/

Department of Geosciences

https://geosciences.princeton.edu/

High Meadows Environmental Institute (HMEI)

https://environment.princeton.edu/

Bendheim Center for Finance https://bcf.princeton.edu/
Operations Research and Financial Engineering (ORFE) https://orfe.princeton.edu/home

