

### U.S. Geological Survey (USGS) Library: Indexes, Catalogs, and Other Bibliographic Tools A Day in the Life of a Reference Librarian



Presented by Emily C. Wild, Librarian (Physical Scientist) U.S. Geological Survey, Denver Library GPO FDLP , Federal Agency Webinars September 19, 2017

U.S. Department of the Interior U.S. Geological Survey

http://www.usgs.gov http://Library.usgs.gov http://www.doi.gov http://www.doi.gov/library

## **Previous GPO FDLP Webinars!**

- August 2017 "<u>USGS Library Oil, Gas, Coal, Uranium, and Minerals</u> <u>Maps and Data</u>" presentation for the U.S. Government Publishing Office (GPO), FDLP Federal Agency Webinars
- May 2017 "<u>USGS Library Using USGS Image, Map, and Data Products</u> for Information Inquiries" presentation for the U.S. Government Publishing Office (GPO), FDLP Federal Agency Webinars
- December 2016 "<u>USGS Library: Geoscience Outreach and</u> <u>Instruction</u>" presentation for the U.S. Government Publishing Office (GPO), FDLP Federal Agency Webinars
- May 2014 "<u>U.S. Geological Survey Library: Access and Outreach</u>," presentation for the U.S. Government Printing Office (GPO), FDLP Federal Agency Webinars



## USGS Denver Library: Reference, Outreach, Bibliographic Instruction, & Map Instruction



Book = Principles of Geology [Shelf list catalog]

Emily C. Wild, <u>ecwild@usgs.gov</u> 303-236-1003

**USGS** 

https://www.usgs.gov/staff-profiles/emily-wild

- 8 am 4 pm Mountain Time
- Online instruction sessions  $4^{th}$  GPO FDLP
- Denver Federal Center : In-Person Sessions
- Denver-Metro Area : In-Person Sessions
- Virtual : Webex Sessions
- 30 minutes; 1 hour; 1.5 hours; 2 hours

Session Topics Include:

- Print Books and Maps
- Library Catalogs
- Publication & Citation Databases
- Full-Text Options: Open-Access
- Digital Maps
- Raw Databases
- Real-Time Databases and Alerts

Disclaimer: The use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.



#### USGS Reference Librarian (Scientist & GIS) Outreach & Instruction = Print and Electronic Products Provide tabular, text, & geospatial data USGS staff, U.S. Government Agencies, Countries, Companies, & Public

Real-Time Data Librarian: current conditions

Disaster Librarian: recent and historical hazard events

Monitoring

17:30 ET

ISGS

**Research Librarian:** Earth's past, present, and future on subjects = biology, geography, and water resources

Law & Legal Librarian: USGS data interconnected with local, state, federal, and international laws, and laws and regulations governing USGS activities



**Formations** 

Department of Justice's Radiation Exposure Compensation Act Program

## What types of questions do you get?





#### Library Inquiries within the USGS

Emergency Response: Earthquakes, Floods, Droughts, Water
 Quality, Mines, Energy, Human Health, Wildlife Health

- Research of Science on Earth (Land, Ocean) and other Planets: Subjects = Biology, Geology, Geography, & Water

#### Library Inquiries from Federal Government

- Disasters: Explosions, Chemical Spills, Floods, Health
- Scientific Research: Local, State, National, International
- Legal: Disasters, Names, Land, Water, Oil, Gas, Minerals
- USGS Data Referenced in Legislation & Legislative Hearings

#### Library Inquiries from Industry & Communities

- Land-Use Change: Hazards, Permitting, Zoning, Preservation
- Legal: Names, Land, Water, Oil, Gas, Minerals, Disasters
- To Understand the Science: Local, Regional, National, World

Ex: Induced Earthquakes, Water Supply, Topo Maps



#### **U.S. Geological Survey: What about the budget?**

- As of today, the U.S. Government is on a Continuing Resolution: Oct 1 to Dec 8, 2017
- For inquiries related to the USGS Budget for FY-2018, contact:
- A.B. Wade : <u>abwade@usgs.gov</u>
- May 23, 2017 : <u>https://www.usgs.gov/news/president-proposes-922-million-fy18-budget-usgs</u>

Highlights: <u>https://www.doi.gov/sites/doi.gov/files/uploads/fy2018\_bib\_bh049.pdf</u> Budget Justification:

https://www.doi.gov/sites/doi.gov/files/uploads/fy2018\_usgs\_budget\_justification.pdf

The following is for reference & information only, not an endorsement:

American Library Association (ALA) D.C. offices news, July 11, 2017

http://www.districtdispatch.org/2017/07/protecting-public-access-earth-science-information/

American Library Association (ALA), letter dated July 10, 2017

: <u>http://www.ala.org/advocacy/sites/ala.org.advocacy/files/content/govinfo/ALA%20Support%20for%</u> 20USGS%20Library%20Funding%20071017.pdf

American Geosciences Institute (AGI), letter dated June 16, 2017:

https://www.americangeosciences.org/sites/default/files/USGS%20Library%20Support%20Letter 201 70619.pdf

AGU EOS article: USGS Library Cuts Would Harm Research, Education, Say Scientists <u>https://eos.org/articles/usgs-library-cuts-would-harm-research-education-say-scientists</u> USGS Coalition: <u>http://www.usgscoalition.org/</u>



#### **U.S. Geological Survey: What makes Denver special?**

The Rocky Mountain Association of Geologists (RMAG) newsletter publication The Outcrop (open-access content) has profiled several USGS staff here at the Denver Federal Center and our stories might be of interest to others : <u>http://www.rmag.org/the-outcrop</u>

September 2017 issue, a USGS librarian, pages 10-17 : <u>https://rmag1.app.box.com/s/77axt278g0mm2upx7pn0u2bbj0nzdzud</u>

August 2017 issue, USGS Ice Core Lab, pages 34-41

: <u>https://rmag1.app.box.com/s/3bdjljqds7pkdp0ixdr5ycggqjbjcugm</u>

July 2017 issue, a USGS paleontologist and archivist, pages 8-14 : <u>https://rmag1.app.box.com/s/jex797pizbvjvtde38sjeezmwpjf87qj</u>

March 2017 issue, a USGS geologist Betty Skipp [- she started working for the USGS 65 years ago!], pages 8-13: https://rmag1.app.box.com/s/a0iclfk5ordkrq2xeoupndfinr5jkvhy



## Help from the U.S. Geological Survey

• ASK USGS - Information:

Call 1-888-ASK-USGS (1-888-275-8747) Press #2 Web Chat Social Media

<u>Email</u>

- To order USGS maps : <u>https://store.usgs.gov/</u>
  Email: <u>usgsstore@usgs.gov</u> or 1-888-ASK-USGS (1-888-275-8747) Press #1
- Imagery from USGS Earth Resources Observation & Science (EROS) Center: <u>https://eros.usgs.gov/find-data</u> & <u>https://eros.usgs.gov/imagegallery</u>
   Email = <u>custserv@usgs.gov</u>

Tel: 800-252-4547

Tel: 605-594-6151

Or Call 1-888-ASK-USGS (1-888-275-8747) Press #4



## U.S. Geological Survey: https://library.usgs.gov/



USGS Library: Public Access to Electronic Resources <a href="https://library.usgs.gov/publiceresources.html">https://library.usgs.gov/publiceresources.html</a>

Example, USGS Denver Library: 8 am to 4 pm Monday-Friday, Closed Federal Holidays





## **Publications of the U.S. Geological Survey**



- Print Indexes (photo above)
- Topographic Maps:

Historical Maps: <u>http://historicalmaps.arcgis.com/usgs/</u> & <u>https://ngmdb.usgs.gov/topoview/</u> Historical & New U.S. Topos, text search: <u>https://geonames.usgs.gov/apex/f?p=262:1:3361765829832</u>

- Geologic/Hydrologic ... Maps: <u>https://ngmdb.usgs.gov/ngm-bin/ngm\_compsearch.pl</u>
- Publications Warehouse: <u>https://pubs.er.usgs.gov/</u>





**WUSGS** 



National and Global Level: Commercial Databases (GeoRef) Agency and Bureau Level: USGS Library (online catalog ) and USGS publication links (report series web sites)

**Regional Area and Subject Level:** USGS field libraries, project and(or) program bibliographies

**Local and State Level:** USGS State office libraries, bibliographies, publication links and GIS datasets

Wild, E.C., and Havener, M.W., 2001, "Online bibliographic sources in hydrology," in Baldwin, Virginia, and Hallmark, Julie, eds., Information and the Scientist and Engineer, 222 p.

Wild, E.C., and Havener, M.W., 2001, "Online bibliographic sources in hydrology," Science and Technology Libraries, Volume 21, Issue 3-4, 2001, pages 63-86. [Link]



USGS Bulletin 746: Geologic literature on North America, 1785-1918; Part I, Bibliography

https://pubs.er.usgs.gov/publication/b746

USGS Bulletin 747: Geologic literature on North America, 1785-1918; Part II, Index

https://pubs.er.usgs.gov/publication/b747

USGS Bulletin 823: Bibliography of North American geology, 1919-1928 https://pubs.er.usgs.gov/publication/b823

USGS Bulletin 937: Bibliography of North American geology, 1929-1939 https://pubs.er.usgs.gov/publication/b937



USGS Bulletin 1049: Bibliography of North American geology, 1940-1949 https://pubs.er.usgs.gov/publication/b1049

USGS Bulletin 1195: Bibliography of North American geology, 1950-1959 https://pubs.er.usgs.gov/publication/b1195

USGS Bulletin 1196: Bibliography of North American geology, 1960 https://pubs.er.usgs.gov/publication/b1196

USGS Bulletin 1197: Bibliography of North American geology, 1961 https://pubs.er.usgs.gov/publication/b1197

USGS Bulletin 1232: Bibliography of North American geology, 1962 https://pubs.er.usgs.gov/publication/b1232



USGS Bulletin 1233: Bibliography of North American geology, 1963 https://pubs.er.usgs.gov/publication/b1233

USGS Bulletin 1234: Bibliography of North American geology, 1964 https://pubs.er.usgs.gov/publication/b1234

USGS Bulletin 1235: Bibliography of North American geology, 1965 https://pubs.er.usgs.gov/publication/b1235

USGS Bulletin 1266: Bibliography of North American geology, 1966 https://pubs.er.usgs.gov/publication/b1266

USGS Bulletin 1267: Bibliography of North American geology, 1967 https://pubs.er.usgs.gov/publication/b1267



USGS Bulletin 1268: Bibliography of North American geology, 1968 https://pubs.er.usgs.gov/publication/b1268

USGS Bulletin 1269: Bibliography of North American geology, 1969 https://pubs.er.usgs.gov/publication/b1269

USGS Bulletin 1370: Bibliography of North American geology, 1970 https://pubs.er.usgs.gov/publication/b1370





### **Please remember:**

Not all USGS publications are indexed in USGS Publications Warehouse or Subscription Databases

# Not all USGS authors are indexed for USGS publications and findable

Not all USGS authored publications are online

Not all online USGS publications are usable



#### Not Indexed Online by the USGS, Online version not useable for research: http://www.ajsonline.org/content/260/3/161.full.pdf

OURNAL OF SCIENCE.

AMERICAN

260

1962

S(200) Am48

**≥USGS** 

Course of

LAMERICAN JOURNAL OF SCIENCE, VOL. 260, MARCH 1962, P. 161-1801 American Journal of Science MARCH 1962

#### STRUCTURAL AND METAMORPHIC HISTORY OF THE GRANDFATHER MOUNTAIN AREA. NORTH CAROLINA: A PRELIMINARY REPORT

BRUCE BRYANT and JOHN C. REED, JR.

S. Geological Survey, Denver Federal Center, Denver, Colorado

1. S. Geological Silvey, Denter Present control control, restrict, contranto a shirs, gasiese, and amphibilities of the Blue Ridge province have overridden a shirs, gasiese, and amphibilities of the Blue Ridge province have overridden presentein geneic redes, which are exposed in the Gas (3) and Lower Cambrian and a shirt granite redes, which are exposed in the Gas. (4) and Lower Cambrian to an and granite redes, which are exposed in the Gas. (5) and Lower Cambrian to reduce a granite redes, which are exposed in the Gas. (5) and Lower Cambrian reduces are in fault contact with recks of the Blue Ridge. The reduce of the state of the state of the Blue Ridge. (5) and the fa-unce have different histories. Older Precambrian rocks both within and above the were meanorphosed under plutonic conditions 1000 to 1100 million years are and management reduces were meanorphosed programs (very and the base-neks in the set Predmont, three and the Paleozoic. Younger volcanic and an amorphism: one or more in the Paleozoic and possibly one in the Pre-ameter of meanorphism.) The Paleozoic and possibly one in the Pre-set of meanorphism.

Results and the second second

#### INTRODUCTION

Bellman, Prinse

A. W. Panton No.

Boole, New 1

1960 (Don'





More than a century ago Elisha Mitchell (1905) recognized that the rocks of the Grandfather Mountain area in western North Carolina are unusual for the eastern Blue Ridge. The rocks were described briefly by Kerr (1875, p. 15-136), but the first systematic geologic mapping was by Arthur Keith and his associates in 1894 to 1907 (Keith, 1903, 1905; Keith and Sterrett, 1954). Is the southern part of the Cranberry quadrangle, and in parts of the Morganin and Mount Mitchell quadrangles. Keith mapped upper Precambrian and Lover Cambrian sedimentary and igneous rocks in the midst of a complex prrase of schists, gneisses, and granites which comprise the bulk of the Blue Ridge in northwestern North Carolina and adjacent Tennessee. Keith believed that the younger rocks occupy a complex syncline overridden from three sides by threat sheets of lower Precambrian rocks. The structure was interpreted on the "Geologic Map of the United States" (Stose and Ljungstedt, 1932) as a undow that has since been called the Grandfather Mountain window (Stose and Stose, 1944, p. 383).

King (1955, p. 362-363) summarized the problems: "A prominent feathe on the geologic map [of parts of North and South Carolina and adjacent tains) is the disorder of the normal rock pattern of the Blue Ridge belt in the Publication authorized by Director, U. S. Geological Survey.

## Betty Skipp, 2<sup>nd</sup> Author (Co-Author), 1963 https://pubs.er.usgs.gov/publication/b1233

Skipp, B A L. See Ross, Clyde P 4192

577 Skipp, Betty A L Zonation of calcareous Foraminifera in the Redwall Limestone (Mississippian), Arizona [abs] Geol Soc America Spec Paper 73, p 245–246, 1963

4192 Ross, Clyde P, Skipp, B. A L, Rezak, Richard The Belt Series in Montana US Geol Survey Prof Paper 346, 155 p, illus, geol map, 1963



## USGS Projects in Saudi Arabia: (200)'s USGS Publications, Print Only







U.S. State Department in Saudi Arabia

#### **Emily C. Wild, Vermont reports**

54, search results: <u>https://pubs.er.usgs.gov/search?q=%22Emily+C.+Wild%22+Vermont</u>



USGS Open-File Report 98-156 : https://pubs.usgs.gov/of/1998/0156/report.pdf

## **USGS Bibliographies**

- = 911 results
- <u>https://pubs.er.usgs.gov/search?q=bibliography</u>



Desert tortoise annotated bibliography, 1991-2015 Open-File Report 2016-1023





Bibliography for acid-rock drainage and selected acidmine drainage issues related to acid-rock drainage from transportation activities Open-File Report 2015-1016



Bats and wind energy: a literature synthesis and annotated bibliography Open-File Report 2012-1110

## Juan de Fuca Ridge & Juan de Fuca Plate







#### Soviet Geology and Geophysics, call #: G(690)G292E

 Dispersed sulfide mineralization in the southern part of the Juan de Fuca Ridge: <u>http://geoscienceworld.org/georef/1989-004340</u>

| DISPERSED SULFIDE MINERALIZATION IN THE SOUTHERN PART<br>OF THE JUNN DE FUCA RIDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V. N. Sbarabov, G. A. 1982 J<br>and Tv. I. Konovalov<br>Geologiya 1 Geofizika,<br>Vol. 29, No. 2, pp. 114-115, 1988<br>Vol. 29, No. 2, pp. 114-115, 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                             |
| Vol. 29, 80, 4, per the upper the start of the start of the start of the start of the start wiley and its slopes has outlined a wider than previous-<br>breads of convergence of contemporary and extinct thermal springs. Wide-<br>ty known areas of convergence of the start of the start of the start<br>of the start of the start wiley and its slopes has outlined as wider that differ-<br>apresis areas of convergence of the start of |                                                                                                                                                                                                                                                             |
| ent than at active works<br>In the axial value of the southern extremity of the Juan de Sub longitude) various<br>latitude, 130/23 ward longitude, 48/43 north latitude, 130/20 were longitude vertes<br>latitude, 130/23 ward hydrothermal springs with sulfide mineralization near their vents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1400 m 300*25 W 24 22 22 23 4 4 m 2500                                                                                                                                                                                                                      |
| In 1986, an expedition of the Pacific Ocean indicate and integration conducts invest-<br>tor AS USER's Scientific Reserved Vessel Academican Vision and Conducts and the science of the State       | Fig. 1. Diagram of location of dredging stations<br>and vents of thermal aprings in the southern part<br>hot solutions (according to [11]); 2) Interest of<br>stations and dredging routes; 3) eron makers of<br>manifestrations and set of the southern of |
| latitude, 130267 wast function of the state          | stations and dredging routes; 3) stations where                                                                                                                                                                                                             |

• Now try to find this Citation: "Hydrocarbon and isotopic compositions of naphthides in the northeastern USSR"

ISOTOPIC COMPOSITIONS OF NAPHTHIDES ORTHEASTERN USSR N. Ilyukhin, V. S. Prokhorov, and O. V. Shcherban No. 2, pp. 109-113, 1988 550.42:553.982(51.6-18)



#### Soviet Geology and Geophysics, call #: G(690)G292E Russian Geology and Geophysics, call #: G(690)G292E

| SOVIET<br>GEOLOGY<br>AND<br>SEOPHYSICS            | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSIC  | GEO                                    | VIET<br>LOGY<br>ND<br>HYSICS           | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | sovie<br>Geology<br>Geophy               | YAND                                   | soviet<br>Geology and<br>Geophysics    | SOVIET<br>Geology<br>And<br>Geophysic  | SOVIET<br>GEOLOGY<br>AND<br>S GEOPHYSICS | Soviet<br>Geology<br>and<br>Geophysics | SOVIET<br>Geology<br>And<br>Geophysics | Soviet<br>Geology<br>And<br>Geophysics | Soviet<br>Geology<br>And<br>Geophysics         | Soviet<br>Geology<br>And<br>Geophysics | soviet<br>Geology<br>And<br>Geophysics    | Soviet<br>Geology<br>And<br>Geophysics   | Soviet<br>Geology<br>And<br>Geophysics  | Soviet<br>Geology<br>And<br>Geophysics  | Soviet<br>Geology<br>And<br>Geophysics | Soviet<br>Geology<br>And<br>Geophysics | Soviet<br>Geologi<br>And<br>Geophysi    |
|---------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|
| 20<br>no. 1-6                                     | 20<br>no. 7-12                         |                                        | 21<br>10. 1-6                          | 21<br>no. 7-12                         |                                          | 22<br>1.1.6                            | 22<br>NO. 7-12                         | 23<br>NO. 1-4                          | 23<br>NO. 5-8                            | 23<br>NO. 9-12                         | 24<br>NO. 1-4                          | 24<br>NO. 5-8                          | 24<br>NO. 9-12                                 | 25<br>no 14                            | 25<br>no 5-8                              | 25<br>100 9-12                           | 26<br>no 1-4                            | 26<br>no 5-8                            | 26<br>ma 9-12                          | 27<br>no 1-4                           | 27<br>no 5-8                            |
| 1979                                              | 1979                                   |                                        | 1980                                   | 1980                                   |                                          | 1981                                   | 1981                                   | 1982                                   | 1982                                     | 1982                                   | 1983                                   | 1983                                   | 1983                                           | 1984<br>G(690)<br>G292E                | 1984<br>G(690)<br>G292E                   | 1984<br>G(690)<br>G292E                  | 1985<br>G(690)<br>G292E                 | 1985<br>G(690)<br>G292E                 | 1985<br>G(690)<br>G292E                | 1986<br>G(690)<br>G292E                | 1986<br>G(690)<br>G292E                 |
|                                                   | G (690                                 |                                        | G(690)<br>G292E                        | G (690)<br>G 292E                      | G                                        | G(690)<br>G292E                        | G(690)<br>G292E                        | G(690<br>G292                          |                                          | G(690)<br>G292E                        | G(690)<br>G292E                        | G(690)<br>G292E                        | G(690)<br>G292E                                |                                        |                                           |                                          |                                         |                                         |                                        |                                        |                                         |
| G(890)<br>G292E                                   | G292                                   |                                        | die de                                 |                                        |                                          |                                        |                                        |                                        |                                          |                                        |                                        |                                        |                                                | Lines                                  | -                                         |                                          |                                         |                                         |                                        |                                        |                                         |
|                                                   |                                        |                                        |                                        |                                        |                                          |                                        |                                        |                                        |                                          |                                        |                                        | F                                      |                                                |                                        |                                           | T                                        |                                         |                                         | 1                                      | T                                      |                                         |
|                                                   |                                        |                                        | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS G | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEOFMYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEORHYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS   |                                        |                                        | SOVIE<br>GEOLO<br>AND<br>GEOPHY        | T SOVIET<br>Gr GEOLOG<br>AND<br>SISICS GEOPHYS | y soviet<br>geologi<br>ics geomys      | RUSS<br>GEOR<br>GEOPT                     | IAN<br>OEY<br>ND<br>HYSICS               | RUSSIAN<br>Geology<br>And<br>Geophysics | RUSSIAN<br>GEOLOGY<br>AND<br>GEOPHYSICS | RUSS<br>GEOL<br>AN<br>GEOPH            | OGY<br>D                               | RUSSIAN<br>GEOLOGY<br>AND<br>SEOPHYSICS |
| G 29/2E<br>SOVIET<br>GEULDGY<br>AND               | SOVIET<br>GEOLOGY<br>AND               | SOVIET<br>GEOLOGY<br>AND               | SOVIET<br>GEDLOGY<br>AND               | GEOLOGY                                | GEOLOGY                                  | GEOLOGY                                | GEOLOGY                                | GEOLOGY                                | GEOLOGY                                  |                                        |                                        | GEOLO<br>AND<br>GEOPHY                 | ISICS GEOPHYS                                  | ics <sup>geophys</sup>                 | RUSS<br>GEOR<br>CS AI<br>GEOPT<br>2<br>12 | HAN<br>DORY<br>NO<br>NYSICS<br>33<br>1-6 | AND                                     | GEOLOGY                                 | GEOL                                   | OGY<br>D<br>YSICS G                    | GEOLOGY                                 |
| G 292E<br>SOVIET<br>GEULOST<br>AND<br>GEOPHYISICS | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | SOVIET<br>GEOLOGY<br>AND<br>GEOPHYSICS | GEOLOGY<br>AND<br>GEOPHYSICS<br>29     | GEOLOGY<br>AND<br>GEOPHYSICS G           | GEOLOGY<br>AND<br>GEOPHYSICS           | GEOLOGY<br>AND<br>GEOPHYSICS           | GEOLOGY<br>AND<br>Geophysics           | GEOLOGY<br>AND<br>Geophysics<br>30       |                                        |                                        | GEOLO<br>AND<br>GEOPHY                 | ISICS GEOPHYS                                  | 1991                                   | <sup>CS</sup> GEOP                        | 4YSIC5<br>33                             | AND<br>GEOPHYSICS<br>33                 | GEOLOGY<br>AND<br>GEOPHYSICS<br>34      | GEOL<br>AM<br>GEOPH<br>3<br>7-<br>19   | ogy<br>D<br>rysics G<br>4<br>12<br>93  | GEOLOGY<br>AND<br>SEOPHYSICS<br>35      |

Russian geology and geophysics (1068-7971);

**≋USGS** 

USGS Library Online Access from 01/01/2007 to present in ScienceDirect Journals

## **Helping with Bibliographic Databases**

| SendNote X                                 |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|--------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\leftarrow$ $\rightarrow$ C (i) www.myend | noteweb.com/8 | EndNoteWeb.html                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 🖸 E |
|                                            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Î |
| Collect Organize Format                    | Match C       | Options Downloads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1 |
| NURE.GJBX                                  |               | Page 1 of 16 Go                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 🗆 All 🔍 Page 🖂                             | d to group    | ▼ Copy To Quick List Delete Remove from Group Sort by: First Author A to Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •   |
| Author                                     | Year          | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
| Aamodt, Paul L.                            | 1977          | Uranium hydrogeochemical and stream sediment reconnaissance in Lincoln and Flathead Counties<br>northwest Montana<br>[Report] - United States Energy Research and Development Administration GJBX 48(77)<br>Added to Library: 02 Aug 2013 Last Updated: 02 Aug 2013<br>Country of the Country o  | 3,  |
| Aamodt, Paul L.                            | 1978          | Uranium hydrogeochemical and stream sediment pilot study of the Boulder Batholith, Montana<br>[Report] GJBX - United States Department of Energy, Grand Junction Office 56-78<br>Added to Library: 02 Aug 2013 Last Updated: 02 Aug 2013<br>C M Find It @ USGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| Aamodt, Paul L.                            | 1978          | Uranium hydrogeochemical and stream sediment reconnaissance data from the area of the Noata<br>and portions of the Baird Mountains and Ambler River quadrangles, Alaska<br>GJBX - United States Dept of Energy 87(78)<br>Added to Library: 02 Aug 2013 Last Updated: 02 Aug 2013<br>Contemportal Contemportal C | k   |
| Aamodt, Paul L.                            | 1978          | Uranium hydrogeochemical and stream sediment reconnaissance data release for the Montana portion of the Hamilton, Montana/Idaho, NTMS quadrangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -   |



### USGS Public Access to Electronic Resources <u>https://library.usgs.gov/publiceresources.html</u>

The following resources have selected full-text content available to USGS employees from their computer desktop and to the general public from computer workstations on-site at USGS Libraries located in Denver, CO; Flagstaff, AZ; Menlo Park, CA; and Reston, VA.

AAPG/Datapages

American Chemical Society (ACS)

Peer-reviewed research journals in the chemical and related sciences.

American Geophysical Union's Digital Library (AGU) -- See Wiley Online

More than 114,000 articles in the American Geophysical Union Library, comprising over 110 years of Earth and space science research

American Institute of Physics

American Journal of Science

"An International earth science journal."

American Meteorological Society (AMS)

Publishes nine atmospheric and related oceanic and hydrologic journals.

American Scientist (Sigma XI)

American Society for Microbiology

Publishes 11 professional journals on microbes, some of which cause diseases, but many of which are otherwise beneficial. <u>American Society of Civil Engineers (ASCE) Research Library</u>

Access to more than 40,000 full-text papers from ASCE journals and proceedings for all disciplines of civil engineering.

Annual Reviews Complete A-Z List

Analytic reviews in 12 focused disciplines within the Life and Physical Sciences.

<u>BioOne</u>

97 high-impact publications across the biological, ecological, and environmental sciences, including 10 open-access, freely available titles. The Birds of North America Online

comprehensive life histories for each of the 716+ species of birds breeding in the USA (including Hawaii) and Canada.



#### **USGS Public Access to Electronic Resources, continued...**

#### Cambridge University Press

Includes the titles Antarctic Science, Environmental Conservation, Journal of Fluid Mechanics, Journal of the Marine Biological Association of the United Kingdom, and Marine Biodiversity Records

**CSIRO** Publishing

Contains titles "Exploration Geophysics", "International Journal of Wildland Fire", "Preview (Australian Society of Exploration Geophysicists)"

**Ecological Society of America -- See Wiley Online** 

Publishes a suite of publications, from peer-reviewed journals to newsletters, fact sheets and teaching resources.

**Geological Society of America** 

Provides access to the Society's peer-reviewed journals and series. Full-text access available from this provider is for "Field Guides"; "Memoirs", "Reviews in Engineering Geology" and "Special Papers" only. Other GSA titles are available through GeoScienceWorld. <u>GeoRef</u> and <u>GeoRef In Process</u> (EBSCOhost)

GeoRef is a citations database of over 2.8 million references to geoscience journal articles, books, maps, conference papers, reports and theses. GeoRef In Process contains records that are in the process of being indexed prior to their integration in the main GeoRef database.

**GeoScienceWorld** 

Full-text database of core earth science journals, interoperable with GeoRef.

**Glossary of Geology (AGI)** 

Groundwater and Soil Contamination Database (AGI)

Journal of Geology (University of Chicago Press)

JSTOR — The Scholarly Journal Archive

Archival access to titles in the "Biological Sciences" and "Health & General Sciences" Collections.

Lyell Collection

Brings together the key journals, special publications and book series of the Geological Society of London.

Nature Journals Online

Covers the Nature journals, with a scope of all aspects of science and medicine

NRC Research Press

Peer-reviewed science journals of the National Research Council of Canada.



#### **USGS Public Access to Electronic Resources, continued...**

**Oil & Gas Journal Oxford Journals** Publishes well over 200 academic and research journals covering a broad range of subject areas. Proceedings of the National Academy of Sciences Sage Publications Major interdisciplinary journal focusing on recent environmental change. Titles include "Holocene" and "Progress in Physical Geography" Science Magazine (AAAS) "The world's leading journal of original scientific research, global news, and commentary." ScienceDirect (Elsevier) Full-text database of Elsevier journals and e-books. Scopus (Elsevier) World's largest multidisciplinary abstract and citations database, indexing some 15,000 journals. Society of Exploration Geophysics (SEG) Research Collection Single access point for the SEG's two journals, its meeting abstracts, and its best-selling encyclopedic dictionary. Soil Science Society of America (American Society of Agronomy) Journals by the society, "dedicated to the conservation and wise use of natural resources to produce food, feed, and fiber crops while maintaining and improving the environment." SpringerLink Journals and eBooks (Earth and Environmental Science) Full-text database of Springer journals and eBooks. **Standard Methods Online** Standard Methods for the Examination of Water and Wastewater **Taylor & Francis Online** A leading provider of specialist information to the global academic & scientific, professional and commercial communities. Web of Science World's leading citation database with multidisciplinary coverage of over 10,000 high-impact journals. Wiley Online Full-text database of Wiley-Blackwell online journals, backfiles, online books. American Geophysical Union (AGU) titles were transferred to Wiley Online in January 2013.



## **USGS Reference = Data Inquiry**

- **Raw Data:** Real-Time, Continuous, Partial Records, and Historical
- Calculated Data: Equations, Software Results, and Model Results
- Map Data: Specific Location Information & other Metadata
- Citation Data: Bibliographic Information for Reference Lists & <u>TO FIND THE PUBLICATION</u>

**Non-USGS** 



## **USGS Library Reference Inquiries:**

#### Subjects: Biology, Geology, Geography, and Water

Includes: Astronomy, Chemistry, Diseases, Economics, Ecosystems, Engineering, History, Land-Use Changes, Mathematics, & Physics

- I need all USGS info for Hurricane Irma All 4 types of data
- What is white-nose syndrome? All 4 types of data
- Where can I find information about pikas? All 4 types
- I need all info for the Animas River and Gold King Mine All 4 types
- What is the flow today on the South Platte River? Raw
- How many earthquakes have occurred in Colorado: where and when? Raw
- I want all USGS maps for the Colorado River Map
- I want all maps for the Moon and Mars Map
- How much water is in the Ogallala aquifer? Calculated

**Raw Data:** Real-Time, Continuous, Partial Records, and Historical



Calculated Data: Equations, Software Results, and Model Results Map Data: Specific Location Information & other Metadata **Citation Data:** Bibliographic Information for Reference Lists and TO FIND THE PUBLICATION

#### (1) I need all USGS info for Hurricane Irma

• Hurricane Irma: <u>https://www.usgs.gov/special-topic/hurricane-irma</u>



**USGS** 

#### (1) USGS info for Hurricane Maria

 USGS field crews in Puerto Rico are preparing for Hurricane Maria <u>https://www.usgs.gov/news/usgs-field-crews-puerto-rico-are-preparing-hurricane-maria</u>



#### (2) What is white-nose syndrome?

#### USGS National Wildlife Health Center, White-Nose Syndrome (WNS) web page: https://www.nwhc.usgs.gov/disease\_information/white-nose\_syndrome/

- White-nose syndrome (WNS) is an emergent disease of hibernating bats that has spread from the northeastern to the central United States at an alarming rate. Since the winter of 2007-2008, millions of insect-eating bats in 31 states and five Canadian provinces have died from this devastating disease. (see map below) The disease is named for the white fungus, *Pseudogymnoascus destructans*, that infects skin of the muzzle, ears, and wings of hibernating bats.
- The USGS National Wildlife Health Center (NWHC), along with the U.S. Fish and Wildlife Service and other partners continue to play a primary role in WNS research. Studies conducted at NWHC led to the discovery, characterization, and naming of the causative agent (the cold-loving fungus *P. destructans*), and to the development of standardized criteria for diagnosing the disease. Additionally, scientists at the NWHC have pioneered laboratory techniques for studying impacts of the fungus on hibernating bats.
- To determine if bats are affected by white-nose syndrome, scientists look for a characteristic microscopic pattern of skin erosion caused by *P. destructans*. Field signs of WNS can include visible white fungal growth on the bat's muzzle and/or wing tissue, but this is not a reliable indicator. Infected bats also often display abnormal behaviors in their hibernation sites (hibernacula), such as movement toward the mouth of caves and daytime flights during winter. These abnormal behaviors may contribute to the untimely consumption of stored fat reserves causing emaciation, a characteristic documented in a portion of the bats that die from WNS.
- Current estimates of bat population declines in the northeastern US since the emergence of WNS are approximately 80%. This sudden and widespread mortality associated with WNS is unprecedented in hibernating bats, among which disease outbreaks have not been previously documented. It is unlikely that species of bats affected by WNS will recover quickly because most are long-lived and have only a single pup per year. Consequently, even in the absence of disease, bat populations do not fluctuate widely in numbers over time.
- The true ecological consequences of large-scale population reductions currently under way among hibernating bats are not yet known. However, farmers might feel the impact. In temperate regions, bats are primary consumers of insects, and a recent economic analysis indicated that insect suppression services (ecosystem services) provided by bats to U.S. agriculture is valued between 4 to 50 billion dollars per year.
- Despite efforts to contain it, WNS continues to spread. In March 2016, a little brown bat (Myotis lucifugus alascensis) found sick in King County, Washington, tested positive for WNS. Genetic analysis on the fungus from this bat found that the strain of fungus was genetically similar to strains found in the eastern U.S. and did not likely originate in Eurasia. See the link below for map of WNS occurrences in North America



### (2) What is white-nose syndrome?

• White-Nose Syndrome (WNS) by County:

https://www.whitenosesyndrome.org/resources/map





Citation: White-nose syndrome occurrence map - by year (2017). Data Last Updated: 8/07/2017. Available at: https://www.whitenosesyndrome.org/resources/map.

#### **USGS Disease Investigation Services**

- To request diagnostic services or report wildlife mortality, please contact the NWHC at 608-270-2480 or by email at <u>NWHC-epi@usgs.gov</u>, and a field epidemiologist will be available to discuss the case. To report wildlife mortality events in Hawaii or Pacific Island territories, please contact the Honolulu Field Station at 808-792-9520 or email Thierry Work at <u>thierry\_work@usgs.gov</u>. Further information can be found at <u>http://www.nwhc.usgs.gov/services/</u>
- Wildlife Mortality Reporting and Diagnostic Submission
  Request Form




# **USGS National Wildlife Health Center**

Diseases currently being researched by NWHC

- Avian Cholera
- Avian Botulism
- Amphibian Malformation and Decline
- Avian Influenza
- Avian Pox
- Avian Vacuolar Myelinopathy
- <u>Chronic Wasting Disease</u>
- <u>Coral Diseases</u>
- <u>Duck Plague</u>
- Foot and Mouth Disease
- Lead Poisoning
- <u>Ranavirus</u>
- <u>Salmonellosis</u>
- Snake Fungal Disease
- <u>Sylvatic Plague</u>
- Viral Hemorrhagic Septicemia Virus
- (Source: Western Fisheries Research Center)
- <u>Vulture Decline</u>
- West Nile Virus
- White-Nose Syndrome

#### WHISPers, a Wildlife Health Information Sharing Partnership event reporting system

https://www.nwhc.usgs.gov/whispers/



Shape color determined by the primary diagnosis of its most recent event

Nut/Met/Dev = Nutrition/Metabolism/Development

|      |             | _             |          |          |        |                 |                                                   |                 |
|------|-------------|---------------|----------|----------|--------|-----------------|---------------------------------------------------|-----------------|
| Туре | Event<br>ID | Start<br>Date | End Date | Affected | States | Counties        | Species                                           | Event Diagnosis |
| •    | 160405      |               |          |          |        |                 |                                                   |                 |
| •    | 160376      | 6/22/2017     |          | 5        | NY     | Suffolk, NY     | Common Tern, Roseate Tern                         | Open            |
| •    | 160375      | 6/20/2017     |          | 200      | CA     | Los Angeles, CA | California Newt                                   | Open            |
| •    | 160368      | 6/19/2017     |          | 19       | VA     | Accomack, VA    | Greater Shearwater                                | Open            |
|      | 400000      | 0.00.0047     |          | 4        | ***    | XXX. XXXXX      | Contrast And Theorem Contrast And Theorem Contras |                 |



## (3) Where can I find information about pikas?

## **USGS Northern Rocky Mountain Science Center (NOROCK)**

https://www.usgs.gov/centers/norock/science-topics/american-pika







USGS Publications Warehouse: https://pubs.er.usgs.gov/search?q=pikas

#### **National Park Service:**

https://www.nps.gov/romo/learn/nature/pikas.htm

Pikas in Peril: <u>https://science.nature.nps.gov/im/units/ucbn/monitor/</u> <u>pikas in peril.cfm</u>

9 animals that are feeling the impacts of climate change: https://www.doi.gov/blog/9-animals-are-feeling-impactsclimate-change

National Academies, Ecological Impacts of Climate Change: <u>https://www.nap.edu/read/12491</u>

Worldcat, search = Pika: <u>http://www.worldcat.org/search?q=su%3Apika&qt=results</u> <u>page</u>

## (3) Where can I find information about pikas?

Behavioral Flexibility May Help Some Animals Deal with a Changing Climate <u>http://blogs.plos.org/ecology/2017/07/27/behavioral-flexibility-may-help-some-animals-deal-with-a-changing-climate/</u>

Behavioral flexibility as a mechanism for coping with climate change <a href="http://onlinelibrary.wiley.com/wol1/doi/10.1002/fee.1502/full">http://onlinelibrary.wiley.com/wol1/doi/10.1002/fee.1502/full</a>



## (4) I need all info for the Animas River and Gold King Mine <u>https://water.usgs.gov/owq/gkm/</u>

#### USGS Water-Quality Information

#### USGS Water-Quality Data and Activities for the 2015 Gold King Mine Release

 
 Overview
 Water-Quality Sampling Results
 Map & Geospatial
 Satellite Imagery
 Past Publications
 Photos
 Contact USGS

#### Water-Quality Sampling Data

USGS has collected water-quality samples at a number of sites downstream from the Gold King Mine since the August 2015 release. As part of our routine science activities, USGS collects water-quality data around the Nation. The region near Silverton, Colorado, has been an area of extensive USGS research on abandoned mine lands and on natural sources of metals and acidity to streams. The locations, types of data, and frequency of data vary based on the objectives of the USGS program or study for which they were collected.

Two main databases are available with data for the area of interest:

- Digital Database from USGS Professional Paper 1651: Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed
- USGS Gold King Mine Release Database (download the data below)

#### USGS Gold King Mine Release Database

#### Download the Data

For convenience and ease of access, USGS has compiled a database of <u>USGS National Water</u>

Information (NWIS) water-quality data, referred to as the USGS Gold King Mine Release Database [25MB ZIP]. The zip file includes copies of the database in two formats: a Microsoft Access Database and a comma-separated-values text file.

#### What does the database include?

The USGS water-quality sites included in the database were selected based on the criteria below. Both approved and provisional data are contained in the database.



USGS gage 09358550, Cement Creek at Silverton. Photo taken September 29, 2012. Credit: USGS. This photo is in the public domain. <u>Higher resolution version is available.</u>







## (4) I need all info for the Animas River and Gold King Mine





A library user told me about these on Aug. 7, 2015; I read both, then scanned them for scientists; after I was done with using them, my colleague Lily created a record & barcoded the publications, and returned the books back to the stacks...

## (5) What is the flow today on the South Platte River?

Subregion 1019 -- South Platte: The South Platte River Basin. Colorado, Nebraska, Wyoming. Area = 23900 sq.mi.

Accounting Unit 101900 -- South Platte. Colorado, Nebraska, Wyoming. 23900 sa.mi. Area = Cataloging Units 10190001 -- South Platte Headwaters. Colorado. Area = 1590 sq.mi. 10190002 -- Upper South Platte. Colorado. Area = 1820 sq.mi. 10190003 -- Middle South Platte-Cherry Creek. Colorado. Area = 2870 sa.mi. 10190004 -- Clear. Colorado. Area = 558 sq.mi. 10190005 -- St. Vrain. Colorado. Area = 978 sq.mi. 10190006 -- Big Thompson. Colorado. 819 sq.mi. Area = 10190007 -- Cache La Poudre, Colorado, Wyoming. Area = 1910 sq.mi. 10190008 -- Lone Tree-Owl. Colorado, Wyoming. Area = 573 sq.mi. 10190009 -- Crow. Colorado, Wyoming. Area = 1410 sq.mi. 10190010 -- Kiowa, Colorado, Area = 720 sa.mi. 10190011 -- Bijou. Colorado. Area = 1360 sa.mi. 10190012 -- Middle South Platte-Sterling. Colorado, Nebraska. 2900 sa.mi. Area = 10190013 -- Beaver. Colorado. 1080 sq.mi. Area = 10190014 -- Pawnee, Colorado, Area = 728 sq.mi. 10190015 -- Upper Lodgepole. Colorado, Nebraska, Wyoming. Area = 1130 sq.mi. 10190016 -- Lower Lodgepole. Colorado, Nebraska, Wyoming. Area = 1350 sa.mi. 10190017 -- Sidney Draw. Colorado, Nebraska, Wyoming. 744 sq.mi. Area = 10190018 -- Lower South Platte. Colorado, Nebraska.

Area =

1380 sq.mi.





https://waterdata.usgs.gov/co/nwis/current/?type=flow&group\_key=huc\_cd

#### (6) How many earthquakes have occurred in Colorado: where & when? Create a Custom Map, State for the past 30 days <u>https://earthquake.usgs.gov/earthquakes/search/</u>





#### (6) How many earthquakes have occurred in Colorado: where & when? Create a Custom Map for State since 1900 : About 471





# (7) I want all USGS maps for the Colorado River

Topographic Maps Geologic Maps Hydrologic Maps Others?





# (7) I want all USGS maps for the Colorado River



**Topographic Maps by using USGS TopoView:** <u>https://ngmdb.usgs.gov/topoview/viewer</u>

## The Colorado River (ID = 45730) on 176 topo maps

| 141 | 39.1294254 | -108.6867645 | 390746N | 1084112W | Fruita                     |
|-----|------------|--------------|---------|----------|----------------------------|
| 142 | 39.1102591 | -108.6634304 | 390637N | 1083948W | Colorado National Monument |
| 143 | 39.0519262 | -108.5542598 | 390307N | 1083315W | Grand Junction             |
| 144 | 39.0835924 | -108.4025877 | 390501N | 1082409W | Clifton                    |
| 145 | 39.1008144 | -108.3484192 | 390603N | 1082054W | Palisade                   |
| 146 | 39.1763692 | -108.2889728 | 391035N | 1081720W | Cameo                      |
| 147 | 39.2588684 | -108.2595278 | 391532N | 1081534W | Wagon Track Ridge          |
| 148 | 39.3099790 | -108.2273044 | 391836N | 1081338W | De Beque                   |
| 149 | 39.3813673 | -108.1323005 | 392253N | 1080756W | Red Pinnacle               |
| 150 | 39.4313671 | -108.0597975 | 392553N | 1080335W | Parachute                  |
| 151 | 39.4858118 | -107.9475707 | 392909N | 1075651W | Rulison                    |
| 152 | 39.4972015 | -107.8717342 | 392950N | 1075218W | North Mamm Peak            |
| 153 | 39.5230355 | -107.7992314 | 393123N | 1074757W | Rifle                      |
| 154 | 39.5416473 | -107.6547817 | 393230N | 1073917W | Silt                       |
| 155 | 39.5652585 | -107.5489447 | 393355N | 1073256W | New Castle                 |
| 156 | 39.5649808 | -107.4975540 | 393354N | 1072951W | Storm King Mountain        |
| 157 | 39.5588710 | -107.3117207 | 393332N | 1071842W | Glenwood Springs           |
| 158 | 39.5905386 | -107.1864409 | 393526N | 1071111W | Shoshone                   |
| 159 | 39.6235948 | -107.1169943 | 393725N | 1070701W | Cottonwood Pass            |
| 160 | 39.7022070 | -107.0483811 | 394208N | 1070254W | Dotsero                    |
| 161 | 39.7708191 | -107.0047688 | 394615N | 1070017W | Sugarloaf Mountain         |
| 162 | 39.8624865 | -106.9105995 | 395145N | 1065438W | Burns South                |
| 163 | 39.8822089 | -106.8680982 | 395256N | 1065205W | Blue Hill                  |
| 164 | 39.8919315 | -106.7030929 | 395331N | 1064211W | McCoy                      |
| 165 | 39.8547090 | -106.6542025 | 395117N | 1063915W | State Bridge               |
| 166 | 39.9527643 | -106.5567014 | 395710N | 1063324W | Radium                     |
| 167 | 39.9985974 | -106.4978115 | 395955N | 1062952W | Sheephorn Mountain         |
| 168 | 40.0427635 | -106.4314211 | 400234N | 1062553W | Kremmling                  |
| 169 | 40.0602630 | -106.2622493 | 400337N | 1061544W | Junction Butte             |
| 170 | 40.0494299 | -106.1666902 | 400258N | 1061000W | Parshall                   |
| 171 | 40.0835967 | -106.0764093 | 400501N | 1060435W | Hot Sulphur Springs        |
| 172 | 40.1066525 | -105.9552938 | 400624N | 1055719W | Granby                     |
| 173 | 40.1294302 | -105.8816797 | 400746N | 1055254W | Trail Mountain             |
| 174 | 40.1430413 | -105.8669570 | 400835N | 1055201W | Shadow Mountain            |
| 175 | 40.3644286 | -105.8589012 | 402152N | 1055132W | Grand Lake                 |
| 176 | 40.4722056 | -105.8261216 | 402820N | 1054934W | Fall River Pass            |

#### Geographic Names Database: https://geonames.usgs.gov/domestic/

| Variant Names                                 |                      |
|-----------------------------------------------|----------------------|
| Variant Nama                                  |                      |
| Variant Name                                  | 0.1                  |
| Ahan Yava Kothickwa<br>Ancon de San Andres    | Citation             |
| Blue River                                    | Citation<br>Citation |
| Bunkara River                                 | Citation             |
|                                               | Citation             |
| Buqui Acqumuri<br>Canon of the Colorado River | Citation<br>Citation |
| El Rio de Buena Guia                          | Citation             |
| Grand River                                   | Citation<br>Citation |
|                                               | Citation<br>Citation |
| Green River<br>Gritetho                       | Citation             |
| Hah Weal Asientic                             | Citation             |
|                                               | Citation             |
| Hahweel                                       | Citation             |
| Javill<br>Mar Barmaia                         | Citation             |
| Mar Bermejo                                   | Citation             |
| Nah Oon Kara                                  | Citation             |
| North Fork                                    | Citation             |
| North Fork Colorado River                     | Citation             |
| North Fork of Grand River                     | Citation             |
| Pa-na-weap                                    | Citation             |
| Packet-to                                     | Citation             |
| Pagah                                         | Citation             |
| Pocket-to                                     | Citation             |
| Red River of California                       | Citation             |
| Red River of the West                         | Citation             |
| Rio Buena Guia                                | Citation             |
| Rio Colorado                                  | Citation             |
| Rio Colorado Del Norte                        | Citation             |
| Rio Colorado del Norte                        | Citation             |
| Rio Cosnina                                   | Citation             |
| Rio Del Norte                                 | Citation             |
| Rio Del Tizon                                 | Citation             |
| Rio Grande De Buena Esperanza                 |                      |
| Rio Grande de Buena Esperanza                 |                      |
| Rio Grande de los Cosninas                    | Citation             |
| Rio Grande de los Martyres                    | Citation             |
| Rio de Buena Guia                             | Citation             |
| Rio de los Martires                           | Citation             |
| Rio del Norta                                 | Citation             |
| Rio del Norte                                 | Citation             |
| Rio del Tizon                                 | Citation             |
| Seedekeeden                                   | Citation             |
| Seeds Keedee                                  | Citation             |
| Seeds Keeden                                  | Citation             |
| Seeds Keeder                                  | Citation             |
| Seeds-ke-Agie                                 | Citation             |
| Seedskeedee Agie                              | <u>Citation</u>      |
| Seedskeeden                                   | Citation             |

Seetes-Ker-Der

Citation

## (8) I want all maps for the Moon and Mars Go to: <u>https://astrogeology.usgs.gov/</u> and <u>https://astrogeology.usgs.gov/maps</u>

Advanced Search : Target = Moon, Data Format = Geologic Map <u>https://astrogeology.usgs.gov/search/results?k1=target&v1=Moon&k2=geospatial\_data\_pr</u> <u>esentation\_form&v2=Geologic+Map</u>

USGS Moon: <u>https://planetarynames.wr.usgs.gov/Page/MOON/target</u>

Advanced Search : Target = Mars, Data Format = Geologic Map <u>https://astrogeology.usgs.gov/search/results?k1=target&v1=Mars&k2=geospatial\_data\_pre</u> <u>sentation\_form&v2=Geologic+Map</u> USGS Mars: <u>https://astrogeology.usgs.gov/solar-system/mars</u> USGS Mars:<u>https://planetarynames.wr.usgs.gov/Page/MARS/target</u>







# (8) I want all maps for the Moon and Mars

| 1        | A                                                                         |       | A                                                                    |
|----------|---------------------------------------------------------------------------|-------|----------------------------------------------------------------------|
| 1  #     | title                                                                     | 74    | 841 Geologic Map of the Geminus Quadrangle of the Moon               |
| 2        | 351 Engineer Special Study of the Surface of the Moon                     | 75    | 893 Geologic Map of the Tharsis Quadrangle of Mars                   |
| 3        | 355 Geologic Map and Sections of the Kepler Region of the Moon            | 76    | 894 Geologic Map of the Lunae Palus Quadrangle of Mars               |
| 4        | 385 Geologic Map and Sections of the Letronne Region of the Moon          | 77    | 895 Geologic Map of the Oxia Palus Quadrangle of Mars                |
| 5        | 458 Geologic Map of the Riphaeus Mountains Region of the Moon             | 78    | 896 Geologic Map of the Phoenicis Lacus Quadrangle of Mars           |
| 6        | 462 Geologic Map and Section of the Timocharis Region of the Moon         |       |                                                                      |
| 7        | 463 Geologic Map of the Montes Apenninus Region of the Moon               | 79    | 897 Geologic Map of the Coprates Quadrangle of Mars                  |
| 8        | 465 Geologic Map of the Aristarchus Region of the Moon                    | 80    | 903 Reference Mosaic of Mercury                                      |
| 9        | 485 Geologic Map of the Pitatus Region of the Moon                        | 81    | 910 Geologic Map of the Noachis Quadrangle of Mars                   |
| 10       | 489 Geologic Map of the Mare Serenitatis Region of the Moon               | 82    | 923 Shaded Relief Map of the Argyre Quadrangle of Mars               |
| 11       | 491 Geologic Map of the Hevelius Region of the Moon                       | 83    | 924 Shaded Relief Map of the Phoenicus Lacus Quadrangle of Mars      |
| 12       | 495 Geologic Map of the Mare Humorum Region of the Moon                   | 84    | 925 Shaded Relief Map of the Lunae Palus Quadrangle of Mars          |
| 13       | 510 Geologic Map of the Julius Caesar Quadrangle of the Moon              | 85    | 926 Shaded Relief Map of the Tharsis Quadrangle of Mars              |
| 14       | 515 Geologic Map of the Copernicus Quadrangle of the Moon                 | 86    |                                                                      |
| 15       | 527 Geologic Map of the Seleucus Quadrangle of the Moon                   |       | 927 Shaded Relief Map of the Margaritifer Sinus Quadrangle of Mars   |
| 16       | 546 Geologic Map of the Theophilus Quadrangle of the Moon                 | 87    | 928 Shaded Relief Map of the Coprates Quadrangle of Mars             |
| 17       | 548 Geologic Map of the Mare Vaporum Quadrangle of the Moon               | 88    | 929 Shaded Relief Map of the Syrtis Major Quadrangle of Mars         |
| 18       | 566 Geologic Map of the Ptolemaeus Quadrangle of the Moon                 | 89    | 935 Geologic Map of the Elysium Quadrangle of Mars                   |
| 19       | 566 Geologic Map of the Ptolemaeus Quadrangle of the Moon (revised)       | 90    | 939 Shaded Relief Map of the Chryse Region of Mars                   |
| 20       | 586 Geologic Map of the Alphonsus GA Region of the Moon                   | 91    | 940 Shaded Relief Map of Mars                                        |
| 21       | 594 Geologic Map of the Sabine DM Region of the Moon                      | 92    | 941 Geologic Map of the Hellas Quadrangle of Mars                    |
| 22       | 599 Geologic Map of the Alphonsus Region of the Moon                      | 93    |                                                                      |
| 23       | 602 Geologic Map of the Sinus Iridium Quadrangle of the Moon              |       | 945 Geologic Map of the Rima Hyginus Region of the Moon              |
| 24       | 604 Geologic Map of the J. Herschel Quadrangle of the Moon                | 94    | 946 Shaded Relief Map of the Cydonia Region of Mars                  |
| 25       | 616 Geologic Map of the Maskelyne DA Region of the Moon                   | 95    | 947 Shaded Relief Map of the Erythraeum Region of Mars               |
| 26       | 617 Geologic Map of Apollo Landing Site 1                                 | 96    | 948 Geologic Map of the East Side of the Moon                        |
| 27       | 618 Geologic Map of the Sabine D Region of the Moon                       | 97    | 955 Shaded Relief Map of the Oxia Palus Quadrangle of Mars           |
| 8        | 619 Geologic Map of Apollo Landing Site 2 (Apollo 11)                     | 98    | 956 Shaded Relief Map of the Amazonis Quadrangle of Mars             |
| 9        | 620 Geologic Map of the Oppolzer A Region of the Moon                     | 99    | 957 Shaded Relief Map of the Nereidum Montes Region of Mars          |
| 30       | 621 Geologic Map of Apollo Landing Sites 3 and 3R                         | 100   | 958 Shaded Relief Map of the Mare Acidalium Quadrangle of Mars       |
| 1        | 622 Geologic Map of the Maestlin G Region of the Moon                     | 101   |                                                                      |
| 2        | 623 Geologic Map of Apollo Landing Site 5                                 |       | 959 Shaded Relief Map of the Bach Area of Mercury                    |
| 3        | 624 Geologic Map of the Wichmann CA Region of the Moon                    | 102   | 960 Shaded Relief Map of the Kuiper Quadrangle of Mercury            |
| 4        | 625 Geologic Map of Apollo Landing Sites 4 and 4R                         | 103   | 961 Topographic Map of Mars                                          |
| 15       | 626 Geologic Map of the Flamsteed K Region of the Moon                    | 104   | 967 Topographic Map of the Syrtis Major Quadrangle of Mars           |
| 6        | 627 Geologic Map of the Lansberg P Region of the Moon                     | 105   | 969 Shaded Relief Map of the Mare Boreum Area of Mars                |
| 7        | 666 Geologic Map of the Cassini Quadrangle of the Moon                    | 106   | 970 Shaded Relief Map of the Mare Australe Area of Mars              |
| 8        | 678 Geologic Map of the Bonpland PQC Region of the Moon                   | 107   | 971 Topographic Map of the Lunae Palus Quadrangle of Mars            |
| 9        | 679 Geologic Map of the Sabine EB Region of the Moon                      | 108   | 975 Topographic Map of the Margaritifer Sinus Quadrangle of Mars     |
| 0        | 690 Geologic Map of the Rupes Altai Quadrangle of the Moon                | 100   | 976 Topographic Map of the Coprates Quadrangle of Mars               |
| 1        | 691 Geologic Map of the Schiller Quadrangle of the Moon                   |       |                                                                      |
| 3        | 693 Geologic Map of the Bonpland H Region of the Moon                     | 110   | 977 Topographic Maps of the Tharsis Quadrangle of Mars               |
|          | 694 Geologic Map of the Rheita Quadrangle of the Moon                     | 111   | 978 Topographic Map of the Oxia Palus Quadrangle of Mars             |
| 14<br>15 | 695 Geologic Map of the Maurolycus Quadrangle of the Moon                 | 112   | 979 Topographic Map of the Mare Acidalium Quadrangle of Mars         |
| 15<br>16 | 701 Geologic Map of the Plato Quadrangle of the Moon                      | 113   | 983 Topographic Map of the Chryse Region of Mars                     |
| 10<br>17 | 702 Geologic Map of the Hommel Quadrangle of the Moon                     | - 114 | 984 Topographic Map of the Phoenicis Lacus Quadrangle of Mars        |
|          | 703 Geologic Map of the Near Side of the Moon<br>Sheet1 / Sheet2 / Sheet3 |       | 985 Topographic Map of the Argyre Quadrangle of Mars                 |
| leady    |                                                                           |       | 986 Topographic Map of the Erythraeum Region of Mars                 |
|          |                                                                           | 117   | 988 Topographic Map of the Cydonia Region of Mars                    |
|          |                                                                           |       |                                                                      |
|          |                                                                           | 118   | 989 Shaded Relief Map of the Diacria Quadrangle of Mars              |
|          |                                                                           | 119   | 990 High Resolution Mariner 9 Pictures in the Cydonia Region of Mars |
|          |                                                                           |       |                                                                      |

14 4 F FI

Ready

991 High Resolution Mariner 9 Pictures in the Chryse Region of Mars

| | | | | | | 100% (-)

Sheet1 / Sheet2 / Sheet3 /

► I

 $(\mathbf{f})$ 



# (9) How much water is in the Ogallala aquifer?

USGS SIR 2017-5040 Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15

https://pubs.er.usgs.gov/publication/sir20175040



Groundwater and Streamflow Information Program

Water-Level and Recoverable Water in Storage Changes, High Plains Aquifer, Predevelopment to 2015 and 2013–15



U.S. Department of the Interior U.S. Geological Survey



#### Abstract

The High Plains aguifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aguifer from predevelopment (about 1950) to 2015 and from 2013 to 2015. The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses. Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aguifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

# Colorado Public Radio (CPR) : September 18, 2017 "After Decades Of Plenty, The Ogallala Aquifer Is Running Dry" <a href="http://www.cpr.org/news/story/after-decades-of-plenty-the-ogallala-aquifer-is-running-dry">http://www.cpr.org/news/story/after-decades-of-plenty-the-ogallala-aquifer-is-running-dry</a>

## **Groundwater declines are linked to changes in Great Plains stream fish assemblages**

#### http://www.pnas.org/content/114/28/7373.abstract

#### [ 3<sup>rd</sup> author is USGS ]

From CPR (Image From NASA): "Green crop circles cover what was once shortgrass prairie in southwestern Kansas. Like crops throughout large sections of the U.S. Midwest, these crops are partly fed by water from the Ogallala Aquifer, a giant layer of underground water. "





# **Thank You!**

Emily C. Wild, Librarian (Physical Scientist) U.S. Geological Survey Library, Denver, Colorado 303-236-1003 or ecwild@usgs.gov Emily Wild - USGS Staff Profile

Next Session : ???



